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Abstract would requirepre-computed encryptiorif data were
stored on the server in encrypted form, then it oot
be necessary to encrypt it for each transfer onnttte
work. The difficulty with such a scheme is that e
tion in NASD is done using session keys generabed f
each client/server interaction, whereas pre-conijmita
requires longer-lived keys.

From the client’'s point of view, these two scheraes
identical- it receives encrypted data and must pay the
cost of checksumming and decrypting it. From thiepo
of view of an adversary, they are also equivaletihe
data he sees is encrypted and unintelligible. Tifferd
ence is only whether the server has to bear theypticn
cost each time a new session key is chosen, ohehitt
can take advantage of data already stored in etedyp
form. Similarly, if written data is encrypted beéoit

There are a variety of ways to ensure the secufitjata
and the integrity of data transfer, depending oz skt of
anticipated attacks, the level of security desigdiata
owners, and the level of inconvenience users dtmgyi

to tolerate. Current storage systems secure déteeby
encrypting data on the wire, or by encrypting datethe
disk. These systems seem very different, and ¢lyrren
there are no common parameters for comparing them.
this paper we propose a framework in which botlesyp
of systems can be evaluated along the securitypend
formance axes. In particular, we show that all bét
existing systems merely make different trade-tdfsgea
single continuum and among a set of related securit
primitives. We use a trace from a time-sharing UNIX
server used by a medium-sized workgroup to quatht : _ .
costs associa}tled with each of thesegseczre gtm;}/ !eaves the client ar_1d is stored encrypted, theeseim-
tems. We show that encrypt-on-disk systems offibr bomate_}S any dgcryptmn work. o

increased security and improved performance oveStoring data in encrypted form was originally prepd

encrypt-on-wire in the traced environment. in Blaze’s Cryptographic File System (CFS) and
expanded in later systems [Blaze93, Cattaneo97,
1 Introduction Zadok98, Hughes99], where itis used for a diffepan-

_ pose- to protect data from untrusted servers. If data is
Much of the focus of recent storage security wos h giqreq on the server in encrypted form it is pridc
been on_protectlng communication between cller_1ds aNfrom leaking by the server (who does not know tag)k
servers in an untrusted, networked world [Gobioff98 .4 there is no need to encrypt data again wHersént
Kent98, Mazieres99, Satran01]. In particular, S@I5iS o the network. Encryption is done by the origiog-
on protecting datdntegrity: preventing unauthorized ,i4r of the file, and updated by subsequent writens
modification of commands or data, modification of \,o server performs no encryption or decryptiorcuge
requests in transit, and replaying of requests. S0f  ;ecksums are still needed to ensure the integfityie
these systems further address the isspeiedcy or con-  communication, but privacy is ensured without répea
fidentiality, of data transfer: preventing the leak of per-byte encryptioh In order to use the data, users must

data in transit by snooping on the network. still decrypt it, but using a long-term key that shmow
The most comprehensive treatment of this topiceésN pe obtained priori.

work-Attached Secure Disks (NASD) [Gobioff99a],

which uses capabilities provided to users by arfin- o hroblem is simply one of key distributiomow users
ager separate from the storage servers. A baaieide  ,pain these long-term keys. This can be done gizna

acceptance of the NASD scheme is the performarsie Coggjized server such as the NASD file manager axE
of the encryption and integrity checking neede8@h  goer Alternatively, a distributed scheme wheatad
clients and servers. In order to reduce this &850 4y ners provide keys to eventual users directlyyasld

proposes a scheme usip@-computed checksumsth 46 10 he done for a system such as CFS, remmess a
secure hashes [Gobioff99] that pre-calculates tores

checksums for long-lived data._N_ASD d_OGS not previd_ LI desired, privacy of arguments still requires mtion
a comparable scheme to optimize privacy since this of message headers, but not of bulk file data.

To support sharing in a system that encrypts datisk,
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tral point for attack. A variant of such a key distition  attacks, security primitives, granularity of prdieq,
scheme is proposed in SFS [Mazieres99, Fu00] and fuand user inconvenience. We elaborate each of tieege
ther expanded in the Cepheus file system [Fu99¢ Th2 1 Players

SNAD system [Miller02] combines aspects of both CFS
(on-disk encryption) and SFS (secure communicatio
and authentication) into a single encrypt-on-digktam.

Even though many secure storage systems have be

proposed and described individually, there is reieay-
atic way to compare and contrast them. We remeidy th

situation by presenting an agnostic framework to @)

describe the features of these systems and thé déve

security they offer. Any secure storage system must

implement a core set of functions, although they ma
vary in the detailed design choices. These chaiffest
both the level of security that the system provjdesl
the performance the system achieves. A similaryshad
been done to establish a framework for evaluatigtad
certificate revocation mechanisms [lliadis00].

In addition to security and performance, there thial
factor to consider when building any secure systie:
level of inconvenience users are willing to toleralf
users must type in a separate password for every-do
ment they open, or individually choose access sidgtit
every file they create, they will soon begin taaimvent
the best intentions of the system designers [Witg
Precise metrics to gauge the impact of this etieetnot
yet established, so we will treat this issue ontjiriectly.

Given our framework, we show how to quantitatively

compare the performance of previously proposed sys-

tems, the overhead on users, and the security igleas
that the systems offer. We do this using a traoenfa

diere we define the players we use in the resteoptiper.

This list covers all of the possible players thag¢ dias to
8onsider for protecting stored data. Each playdisisd

With a set of legitimate actions it can perform yAather

action by that player is treated as an attack.

owners— create and destroy data (i.e., render data
un-readable by all readers), delegate read and
write permission to other players, and revoke an-
other user’s privilege to read or write owned data.

readers — read data once permission to read was
delegated by owners.

writers — modify data once permission to write
was delegated by owners.

wire — transfers data between other players.

storage servers — store and return data upon re-
quest. (For instance, these are file servers in,NFS
disks in NASD, or disk arrays in iSCSI.)

group servers—authenticate other players and au-
thorize access based on membership groups as de-
fined by owners.(For instance, these are group
servers in NASD or the NIS server in NFS.)

namespace servers allow traversal of
namespaces, such as provide support for lookup
of directories and files in directories.

Finally, we define aradversaryto be any entity who

non-secure UNIX file system to estimate the workattempts to perform functions other than those ithiat

required for the various secure schemes. This atialu
is independent of the actual system implementatims
provides a general way of evaluating security astil e
mating cost. Finally, our analysis shows that epton-
disk systems are not only more secure but alsoigeov
better performance than encrypt-on-wire systems.

The rest of the paper is organized as follows. i8e@
defines our framework for storage system secudsgn-
tifies a range of attacks, and suggests a coref seicu-
rity primitives. Section 3 describes how systemigies
proposed elsewhere fit into the framework, and hiosv
choices they make impact security or improve perfor

authorized to. Notice that this definition of adsey
also includes legitimate players attempting to qrenf
actions beyond what they are authorized to.

Though in the above definitions, functionalitiefetien-
tiate players, actual systems might choose to agdgee
multiple players into a single entity. For instand&SD
combines the functionality of the group server and
namespace server into a single metadata server.

We intentionally omitted any key-escrow agent frihva

list of players because its main purpose is toakkeys
and identities when necessary but it does not adde
basic level of security of a storage system.

mance. Section 4 evaluates the decisions made alog this point, it is important to note that the frawork

each of these axes using a traced workload frorEXU
time-sharing server to concretely quantify secucingts
in day-to-day usage. Finally we conclude in Secfion

2 Framework of storage security

In this section, we abstract the commonalities agnon
known secure storage systems into a general framkewo

The framework consists of five components: players

presented here is not intended to allow evaluaiiche
end-to-end security of a particular system. Thigies
careful analysis of each system component anddhe p
ticular combination of components. Any secure sydte
only as strong as its weakest link. Our framewarkad
replacement for such analysis, but simply seelksdltov

a high-level comparison among different schemes, pu
posely leaving some secondary details unexamined.
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2.2 Attacks The last attack, involving collusion with other deas or

Broac”y’ there are two kinds of data that p|aym'3d‘|e: writers is very difficult to prevent without substéaal

« short lived data that is communicated, or agreed COMPlexity and support from outside the system, fzarel
upon, in each session, and been listed above for completeness. We will noser

« long lived data and metadata for persistent starag it further in this paper. _
- : Each of the above attacks can further be brokertimee
Existing systems for network security have mostly

addressed the compromise of short-lived data aad thkIndS based on the effect they have on the data:

protocols used to communicate them. In addition to @) leakattacks—are those where the adversary gains

securing data on the wire, storage systems muset als access to some data.
secure long-lived data on the servers. These touaine- b) change attacks — are those where the adversary
ments give rise to the following set of attacks.eTh makes valid modifications to data (i.e., modifica-

attacks may be mounted on the data or the metadata, tions that readers cannot detect as invalid).

unless explicitly specified otherwise: c) destroy attacks — are those where the adversary

a) by the adversary on the wire — for instance, an makes invalid modifications to some stored data.
attack mounted on the NASD protocol used to An invalid modification is any change to data that
communicate files to the clients. is detectable as incorrect by the owner or readers.

b) by the adversary on the servers— for instance, an Table 1 provides a summary of these attacks andevher
adversary updating a file on a NFS file server.  they occur in practice. The data summarizes a gurfre

c) by a revoked user on the servers — for instance CIOs and system managers showing the percentage of

where a revoked reader (no longer part of the Sys[espondents .reporting a particular attack. The etabl
tem) can continue to read files in Cepheus. shows the primary types of attacks from our lisb\ab

that each of these real-world attacks touches.iffteat

is to motivate the importance of all of the attatikted
above, including some that may not have been censid
ered very crucial in past work (such as revocation)

d) by theadversary colluding with the storage serv-
er — for instance, one where a CFS encrypted di
rectory is deleted by the UNIX file system.

e) bytheadversary colluding with the group server 2.3 Core security primitives

- for instance an adversary gaining access to data _
after corrupting a NASD file manager. Secure storage systems as proposed in researciomnd

_ _ ) mercial systems implement a myriad of securitydesg
f) by the adversary colluding with readers or writ- 4 enaple players to securely perform their funtio

ers—for instance, a reader passing a copy of a filerpqgh the details of the schemes used differctie
to an adversary.

T Teaueney | cost | messages | e |

% of estimated denial

companies| damage revoked of
attack reporting | ($ millions) | leak |change | leak |change |destroy| user |service

telecom eavesdropping 10 %

active wiretap 2% n/m - X - - - - -
system penetration 40 % 19 X X X X X - -
laptop theft 64 % 9 - - X - X - -
theft of proprietary information 26 % 150 - - X - - X -
unauthorized access by insiders 49 % 6 - - X X - X -
sabotage 18 % 5 - - - - X - X
virus 94 % 45 - - - - X - -
denial of service 36 % 4 - - - - - - X

Table 1. Frequency and cost of attack&he frequency of various attacks and their mappitgour framework. The % numbers are
as reported in a survey of five hundred system marsataken in Spring 2001, with almost all categgshowing significant increases
over previous years [Power01]. The cost columngihe self-estimated damage to their businessds.tNat although over 75% of
respondents claimed that they had experienced swnetary damage due to the attacks reported, &y \8ere able to estimate the
extent of the damage, which means the numbers shosvanly low estimates. Industry estimates ofttital damage to companies
worldwide from all attacks run into the billions dbllars. The boxes marked “X” show the primary dgma caused by a particular
attack, although other damage is also possiblesimyncases. The intent is not to exhaustively enateehe damage, but to motivate
each of the attacks in the framework as an impottaeat and give a very rough idea of relative amgnce.
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set of security primitives can be abstracted intdypes:
authentication, authorization, securing data onvthre,
securing data on the disk, key distribution, aneboa-
tion. As we show in Section 3, not all systems seagly
provide support for all of these, and the choicexlen
directly affect the performance of the system aecus
rity guarantees provided. In the rest of this sattive
elaborate on each of these primitives and the itapor
choices in implementing them.

2.3.1 Authentication

The purpose of authentication is to establish dieatfity
of a particular player in order to authorize thagtions.
Storage systems may implement authentication irobne
two general ways:

a) distributed authentication — owners explicitly
authenticate each player to authorize access to t

data they own (as in CFS, or the use of serve

public keys in SFS).

centralized authentication — owners delegate re-
sponsibility for authentication and authorization
to a group server (as accomplished throug

b)

checks done by the file server in NFS or the file

manager in NASD).
In general, there are three mechanisms to achiexeah
authentication: a public key infrastructure (PKd)cen-
tralized scheme (e.g., Kerberos [Steiner88]), pass-

word-based scheme. The former two are quite simila

Both need a trusted third party and differ in hoften
this party is consulted. The latter one requiraaespre-
exchanged shared secret, which can be difficuttam-
tain in a distributed environment.

The usual concern is about authentication of owner
readers, and writers to storage servers or groesse
but there may also be concern about authenticatng
erstousersto prevent improper service. Again, although
this is an important consideration, we do not cdesit

a primary security requirement for this analysis

2.3.2 Authorization

The purpose of authorization is to allow the owoér
some data to delegate (partial) access to the tdata
another player. The user is authenticated andiiwtity
checked against a known set of permissions detednin
by data owners. Authorization can be done in ongvof
general ways:

a) server-mediated — servers receive actions and

perform them on behalf of readers, writers, and

owners (as in NFS and AFS).

b) owner-handled — owners provide readers and

perform actions (such as the capabilities in

NASD, and the server keys in SFS).

h

2.3.3 Securing data on the wire

Protocols for ensuring reliable and secure passihg
messages have been well studied. Several standard p
tocols have been proposed, including SSL to provett
traffic, SSH to protect remote terminals, and IP8®c
protect Internet traffic more generally [Kent98].vari-

ant of such a system for storage is used in NASD
[Gobioff98]; a similar scheme is used in the selftify-

ing file system [Mazieres00]; and IPsec has been pr
posed as the security mechanism for iSCSI [Satjan01

To ensure data integrity on the wire some schen@n
ing keyed checksums (MACs) will always be needed,
irrespective of the design chosen. The MAC is uedik
the checksum to a particular player, and the cheuks
used to tie the MAC to a particular set of datdindes-
tgmped MAC also protects against replay or server

|rmpersonation (man-in-the-middle) attacks [Gobi8ff9

With the increasing deployment of protocols sucB38k

and IPsec, hardware solutions are becoming availabl

that offload the heavyweight cryptographic operagio

from client or server processors. Such hardware may
upport an entire protocol in its end-to-end foomsim-

ply provide accelerated primitives that can be usetif-

ferent ways by various systems. Once concernsraver

encryption or checksum speed are removed, parasneter

such as number of key changes and requiremenkejor

storage present further bottlenecks [Cravotta01].

r2.3.4 Securing data on disk

The reasons one may want to encrypt data on theadis
that the server is inherently untrusted or the semight

be compromised, such as a stolen disk or laptogu@o-
antee that the data and metadata are not compmbmise

Sthey must be stored encrypted on disk. To accoimplis

this encryption, two types of ciphers may be used:

a) symmetric cipher — a single private-key system,
such as DES or AES [Schneier95, Nechvatal00],
that is used to perform bulk data encryption and
decryption (such as the privacy option in NASD).

b) asymmetric cipher — a system using a pair of

keys, such as RSA [Schneier95], that is generally
used for authentication and to bootstrap the shared
keys to be used by the symmetric cipher (such as

the authentication protocols of IPsec).

Since computing asymmetric ciphers is much slower
than symmetric ciphers, these operations are usad s

ingly, either for key exchange, or to protect stbsym-
metric keys in dockbox(such as those used in Cepheus).

2.3.5 Key distribution

'Jn a secure storage system that relies on encryptio
protect data, each piece of data has some assbkiyte
— either symmetric of asymmetric, depending on the
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structure of the system that are required to access it. ¢) periodic re-encryption — change keys and re-
These keys may be used in one of two ways to: write data periodically to limit the window of vul-

a) directly encrypt data — the keys are used by _ntajrab_ility [Gobioff99al. _
writers to encrypt and by readers to decrypt datal he distinction between aggressive and lazy reygacr

directly at the edges of the system (as in CFS). tionis a general consideration for secure stordgeuser

b) prove authorization — possession of the keys is had access to particular data at one time, theyangy
P poss Y way have copied it elsewhere, so protecting future
used by readers and writers to prove that they .
. o changes becomes most important.
have the requisite authorization (such as the capa-

bilities in NASD). 2.4 Granularity of protection

Use of the keys to prove authorization requiresstiiger  To provide secure storage, a system bears theiaualit

be trusted to accurately perform the necessarykshec overhead of the cryptographic operations discussed
Direct encryption ensures that only readers oressiare  above, and the key management. To limit the key-ove
able to access the data or create valid new dataekker, head, various systems implement different optinizet

it complicates revocation since readers and writaree  including aggregation of players into groups to ifg
been given the keys themselves, rather than sidgdg  authorization, and trading off the security of sHored
gated capabilities. keys against the ease of management of long-teys ke

2.3.6 Key distribution 2.4.1 Group membership

For either use of keys, any system with sharedsactte  The purpose of group membership is to compactlyerep
files then requires some mechanism to distributgske sent the permissions on a particular set of datsiraply
among readers and writers. Current systems implemerwerifying the membership of a player in a group #ren
this key distribution in one of two ways: authorizing access based on group permissions.eTher

a) usingagroup-server — a centralized group server &€ two ways to decide group membership, namely:

maintains the keys to all files, and the access a) distributed group membership - owners
control lists. If a user is in a particular lidieh the explicitly determine who is authorized to share
server provides the key to the corresponding file data and distribute the necessary keys (as in CFS).

(@sin NFS, AFS, and Cepheus). b) centralized group membership — owners delegate
b) owner-handled - file owners themselves provide authorization to a group server that distributes
readers and writers with keys that they can use to keys (as in NFS with NIS, NASD, and Cepheus).
perform actions. This typically complicates key Access control lists are a variant of group menttiers
revocation if the readers and writers cache keyshat explicitly enumerate all the players, but thA€Ls
(as in variants of CFS). must still be stored somewhere and essentiallyigeov
2.3.7 Revocation the group membership function [Howard88, Hughes99].

Traditionally revocation is discussed in the cohtek  2.4.2 Granularity of keys

centralized services such as certificate auther{@®\s)  The keys used to encrypt and decrypt a particidaps
where it removes the association between the pﬁySiCdata may be short-term or |ong-term_ Short-termskey
identity of a player and a particular key. In tieatext of  reduce the vulnerability window by decreasing the
secure storage, this is extended so that a plagecsss  amount of data encrypted with the same key, whereas
privileges to a particular piece of data can beoked.  |ong-term keys are easier to manage since thefewss

When a player is revoked (e.g., a user leavestepkar  of them, and they are exchanged less often.
workgroup) the keys to which this player had access

must be changed. In systems where data is stored
encrypted, this will require data to be re-encrdgpte
which may be done as follows:

a) short-term keys— typically last for the duration of
one player and one session (as in NASD, and
iISCSI with IPsec).

b) long-lived keys — typically last across sessions
revocation, re-write data with a new key. Copies %nggqslg;:‘é)eséhsi same across multiple players (as
of data distributed under the old key in the past , ' ,

remain readable. When using Iong—term keys, the granulanty of datao-
ciated with a single key greatly impacts the numtifer

b) lazy re-encryption — delay re-encryption of the yeys required; the choices include a key per-fiet-
file to the next time it is updated [Fu99] or read. directory, per-user-group, or per-file-group.
This saves encryption work for rarely-accessed

files, but leaves data vulnerable longer.

a) aggressive re-encryption — immediately after a
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Additional concerns arise when considering veryglon smart card or other protected device that handles a
lived keys, such as digital signatures on documtivds  encryption and key storage.

must last for many years [Maniatis02], or for bagku The comparison in Table 2 summarizes the characteris
tapes [Boneh96]. tics of each of the systems presented in this@ecsind

2 5 User inconvenience which attacks each system addresses.

In addition to security and performance, it isicdtto 3.1 CFS and similar systems

consider the level of inconvenience users arenglio  The first widely-known discussion of security féosage
tolerate before they become sloppy and circumveait t systems is the Cryptographic File System (CFS)

intent of the system: [Blaze93]. In CFS a directory to be protected is
a) convenient — single login password and tokens encrypted using a secret key. The underlying datlagn
derived from this. stored as a single file in the host file system attaiched

as a cleartext directory undefayptomount point. This

b) inconvenient — compartmentalized access, multi- )
. : allows the host file system to treat the encryptath as
ple passwords for different services, passwords . s .
yet another file. Normal utilities such as backupdtion
are re-entered frequently and changed regularly.

_ _ without alteration; they never have access to kbartext
c) very inconvenient — resources are protected at a data. The system is implemented as a user-level NFS
very low level (e.g., password per documentjgopback mount, and files are decrypted when aecess

opened or per application invocation). CFS was designed as a seclareal file system, so it
Forcing users to remember long lists of passwoftEo  |acks features for sharing encrypted files amongysis
leads to poor password choices, or sloppy passworgthe only way to share a protected file is to digebtind
practices (e.g., post-it notes) [Adams99]. The jgobis  out keys for protected directories to other usetsw-
exacerbated when users handle keys explicitly aakem ever, CFS does protect against attacks where th@bi
encryption choices on their own [Whitten99]. disk are compromised, such as when a computeois st
Some of the password issues may be addressed by widen. The key characteristics of CFS are:
spread use of smart cards. The difficulty is thas t
removes the main aspect of active user involvenrent
maintaining security. Users must be aware of sgcini i
some way, otherwise they will become complacent and * the host file system acts as the storage server as

players
* owners, readers and writers are indistinguishable.

assume the system is infallible. The parametethasfe well as the group server, in authorizing file acces
trade-offs are not yet well understood, but ovesattu- * namespace traversal is handled by readers and
rity of data may well hinge on such usability issue  writers themselves.

[Whitten99]. trust assumptions

* the storage server is untrusted and does not sicces
3 Secure storage SyStemS the keys, protecting against leak and modify agack
In this section we cast previously proposed desfgns involving collusion with the storage server.

secure storage onto the framework described in . the storage server is trusted to prevent destmcti
Section 2. Where appropriate, we highlight the trust f data.

assumptions made by each design, and mention gpecif ) o

extensions proposed. Our intent is to evaluate egsh ~ SE€CUrty primitives

tem against a common set of criteria. For thisorase « owners handle authentication when distributing
concentrate on those aspects that address therprima Kkeys to encrypted directories and files.

functions of a secure storage system. This doemaah - authorization for read is done by passing keys to

that additional functions or characteristics ofiundual readers and writers.

designs are less important. The overall security 8§s- . the host file system verifies the authorization of
tem must always be evaluated holistically: a sysm  writers to overwrite existing data, but the valdit
only as secure as its weakest link. of these modifications is assured only by havirg th
In this same vein, we also assume that issuesavatipg proper key.

system trust are dealt with separately. For alldiseus- « writers encrypt data using a symmetric cipher
sion in this paper, readers, writers and ownersiishioe before storing it on disk.

thought of as the smallest possitilested coresurround- « there is no provision to protect data while on the

ing a user [Dalton01]. If necessary, this may elbera wire, as CFS is essentially a local system.
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» since CFS is designed for the local file system, A later generation CFS [Blaze94] includes a key@sc
distribution of keys is done directly by the owners system. This is necessary to recover keys whendhey

e revocation requires immediate re-encryption of nhot be obtained from the owner, for instance, after
data, since a revoked user can collude with the owner has left the organization. Truffles [Reihgdr@Ses
storage server to attack the data. an alternative method of handling this problem plits

ting keys such that amymembers of a group can collude

to regenerate the key of a missing owner.

All of the above systems assume untrusted serkeys;
are known only to the owners, readers and writens],
not trusted to the system itself. The key escrostesy in

* long-lived keys are used on a per-directory basis. cgsg depends on trusting the key database, butusdt t
CryptFS [Zadok98] extends CFS to be more efficignt ing the servers. Truffles distributes this trustthat a
building it as a stackable file system rather thamser ~ group of owners are trusted instead of a singlalutege.
level server. It attempts to make the system mesitient  There are several systems that encrypt data omeenti
to attacks due to corruption of individual usersusing  devices and transparently decrypt the data whea it
session IDs and user IDs to index into the keyetabl accessed. These include Secure Drive [Swank95],
rather than using only usernames. TCFS [Cattaneo9&ecure FileSystem [Gutmann96] and PGPdisk [NA9S].
Cattaneo01] uses a lockbox to store a single lath€r  These systems are similar to CFS except that themp+
than per-directory keys), and encrypts only filéeadand  selves do not perform any authentication or autaeri
file names; directory structures and other metadata tion; they rely on the operating system for these
left un-encrypted. Beyond the implementation differ primitives.
ences and varying key granularity, CryptFS, TCH#| a
CFS are identical with respect to our frameworK. &l 3.2 SFS
these systems are described for use on a locafiiem.  Most secure storage systems assume the servers to b
They could also be used as mounts over a remetsyfi-  Part of the trusted infrastructure and concentoatguar-
tem, with protection of the communication to thmoge ~ @nteeing that the users accessing the serversaperty

server. We consider only the simple, local caseher ~ @uthenticated. The Secure File System (SFS)
[Mazieres99] addresses the problenmuoftuallyauthen-

granularity
» the local file system aggregates users into groops
authorize access, but there is no explicit decision
aggregating the keys used to encrypt data.

subvert | denial

message group of
system attacks change | destroy | leak |change | destroy server | service

CFS & similar | 3.1 - yes yes no yes yes no - - - no
SFS 3.2 yes yes yes yes no no no no no no no
SFS-RO 3.3 yes yes yes no yes yes no no - yes? no
Cepheus 3.4 yes yes yes yes yes yes no yes! yes no no
SNAD 34 yes yes yes yes yes yes no yes yes no no
NASD 3.5 yes yes yes yes no no no yes yes no no
iSCSI w/ IPsec | 3.6 yes yes no no no no no yes yes - no
LUN security 3.7 no no no no no no no no no - no
AFS 3.8 yes yes yes yes no no no yes yes yes no
NFSv4 3.9 yes yes yes yes no no no yes yes no no
Windows EFS |3.10 - yes yes no yes yes no - - no no
PASIS/S4 311 - - - yes yes yes yes - - - no*
OceanStore 311 - yes yes yes yes no° yes yes yes - no*

Table 2. Summary of security guarantees provided by diffesgstemsA “yes” means that the system prevents that pdaiattack;
for instance, Cepheus prevents attacks that le@kiyestealing the storage server because it etecoypthe media. A “no” means that
the system fails to handle that particular atta&ldash means the attack is not applicable to thstem. (1) Cepheus uses lazy
revocation, which re-encrypts data only on the ngdate; this allows data to leak until is has begaated, making this a qualified
“yes”. (2) Subverting the group server does notogrey additional vulnerabilities that are not athgaresent from the adversary acting
alone. (3) Since only a single replica is useddghereader, a reader colluding with a single s®isgyver could cause another reade
to see invalid modifications. (4) Although a recfuesa busy replica could be re-directed to otlepticas, a combined attack on all the
replicas could still be mounted.
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ticating the servers and users. Authentication hef t
server is necessary to prevent an adversary spptfin
server, for instance, when the servers are patpmfblic
infrastructure. One important tenet of SFS is tihas
independent of the key distribution and authenticat
mechanisms. The characteristics of SFS are:

players
» owners, readers and writers are differentiated.
» the storage server also functions as the growgser
in authenticating users.

trust assumptions

security primitives

* same as in SFS, except that data is stored ercrypt
on the disk. Data is signed and encrypted by the
owners when it is stored. Readers can verify the
integrity of data by verifying the signature.

granularity
« since the data is already encrypted on disk, ttsere
no need to encrypt it again before transmission.
3.4 Cepheus and SNAD

The Cepheus system [Fu99] builds on SFS to dewelop
general purpose file system, while Secure Network-

» the storage server is trusted with the data and is Attached Disks (SNAD) [Miller02] combines the func-

vulnerable to leak or modify attacks by an
adversary colluding with the server.

security primitives

« servers and users perform mutual authentication.
Servers are authenticated usirsglf-certifying
pathnames to files. Self-certifying pathnames are
similar to mount points in traditional NFS, except
that they have the public key of the server
embedded in them.

« the group server uses NFS style user authorization

 a session key is used to protect all communication
between the server and users.

tions of CFS and SFS. In particular, both systesepk
files encrypted on disk, and include the abilitystware
and update the encrypted data. They differ only faw

areas, and have the following characteristics:

players

* owners, readers and writers are differentiated via
specific authorization schemes for writes.

» Cepheus uses separate storage servers and a group
server that distributes lockboxes. SNAD relies on
public/private key pairs for groups and must use a
group server to distribute these, but stores
lockboxes directly on storage servers.

« a distributed mechanism is used to obtain server tryst assumptions

keys (through self-certifying pathnames).

* revocation of servers requires readers to check a

centralizedevocation listof revoked servers.

granularity

« traditional UNIX style aggregation of users into
groups helps simplify authorization.

* uses a session key to protect all communication
3.3 SFS-RO

« the storage server is not trusted with the dath an
hence not vulnerable to leak or modify attacks by
an adversary in collusion with the server.

- the storage server holds file encryption keys in
lockboxes that are encrypted. In Cepheus, only
readers and writers hold the keys to lockboxes,
preventing attacks in collusion with the group
server. In SNAD, separate key pairs are used for
groups, so the group server for these is vulnerable

SFS was extended in SFS-RO [Fu00] to support storag « revoked users can continue to decrypt files uhél

and retrieval of encrypted read-only data. Thisvjates
a solution to securely distribute widely-accessatad
(such as application binary kits) over the Interaging
individually insecure mirrors as storage serveES3R0O
has the following characteristics:

players
» same as SFS except that there are no writergy
owners can modify the data that they have created.
trust assumptions

* the storage server is not trusted with the dath an
hence not vulnerable to leak or modify by the
adversary in collusion with the server.

files are updated, at which point they are enciypte
with a new key lazy revocation Revoked users
cannot update or destroy data.

security primitives

« servers check user authentication and authorizatio
via the lockboxes.

* both systems use keyed HMACs stored with the
data to detect modify attacks.

« all data on the disk is encrypted by the usersnwhe
it is written. Both systems use symmetric keys,
making possible modify attacks where readers
collude with storage servers to write data.

« a session key and checksums are used to protect al
communication between the server and users.
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» keys to lockboxes are distributed by the group
servers, and individual user public and privateskey
are required via a public key infrastructure.

» Cepheus implements lazy revocation, where files
are re-encrypted only when they are next updated
SNAD suggests use of a similar scheme.

optimizations
« though different keys encrypt different files tmet
same group, they are kept in lockboxes locked with

the same group key, so users need only one key pe

group.
« long-term keys encrypt all files.

» both systems use block-level encryption (8 KB
blocks for Cepheus, 4 KB for SNAD) to allow
updates of the individual parts of larger files.

A recent extension to Cepheus and SFS also assum

untrusted servers, and further seeks to deteatkattay
the server on the integrity of stored data [Maz6dq.

For instance, one can detect when the server pFevid

different versions of the same file to differenerss

3.5 NASD

Network-Attached Secure Disks (NASD) [Gobioff99a]
proposes a distributed network of intelligent diskth a
shared group server (that also handles metadathirém-
tory traversals). Access for data objects on thskglis
authorized by the group server who hands a capatuli
the user. The disk and group server share a kelypan
sented with the appropriate capability, the diskises
the request. Data is stored in the clear on tHesdimut all

 data is encrypted on the wire, and integrity is
guaranteed using a MAC on checksums.

« the centralized metadata server makes revocation
fast.

' trust assumptions

» owners delegate capability distribution to metadat
servers. The storage and metadata server are
assumed to be trusted; all data is stored in g .cl

rgranularity

« checksums and keyed MACs ensure the integrity of
requests and data transfer between clients and
servers.

« introduces a scheme of pre-computed checksums
for stored data to reduce the computation of
generating checksums on each individual request.

RASD for the first time suggests that individuakkdi
drives directly participate in security protocolEhis
requires at a minimum strong checksums and keyed
MACs for integrity, and optionally encryption and
decryption for privacy.

3.6 iSCSI

iISCSI [Satran01] is a draft IETF standard to comnec
hosts to SCSI devices using TCP as the transpocteS
devices may be used across the Internet, security i
major concern. There is a draft proposal [Klein@®]
implement a security protocol within iSCSI to auttie
cate hosts and protect the integrity of commandten
wire. The main characteristics of this proposal are

communication is encrypted. NASD has the following Players

characteristics:

players

» owners, readers, and writers are differentiated.

« the group server and namespace server is integrate
into a single metadata server (the file manager),
which is clearly distinct from the storage servers.

trust assumptions

« all messages on the wire are encrypted.

* since data is stored in the clear on the storage

servers, NASD is vulnerable to attacks in collusion
with the storage server.

» since all authentication and authorization data is

present in the metadata server, NASD is vulnerable

to attacks in collusion with the metadata server.

security primitives

» the metadata server authenticates and authorizes

clients by handing them capabilities, which are
later verified by the storage server.

* there is no notion of individual users; readers,
writers and owners are all the same as the host on
which they operate. The protocol leaves the is§ue o
authenticating and authorizing individual users to
the host.

« there is no group or namespace server, only a
storage server.

trust assumptions

« although the storage servers and hosts are mytuall
authenticated, data is not protected from the sgrve
making it vulnerable to attacks involving collusion
with the server.

security primitives

« servers and hosts authenticate using a public and
private key mechanism.

« the server does not explicitly differentiate betwe
reads and writes.

 data and commands are encrypted while on the wire
using IPsec [Kent98].
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» the key for authentication is distributed by an
external mechanism.

secure version of RPC is used to protect commuipitat
though some questions have been raised regardisg th

e revocation is achieved by Changing the access [Gobloff99a] The key characteristics of AFS are:

control list.
granularity
» session keys are negotiated on a per-login basis.

3.7 LUN security

Disk arrays aggregate the individual disks in thaya
into logical units (LUNs), which are then accesésd

players
» AFS servers act both as storage servers and group
servers; authentication is performed by a separate
Kerberos server.
* readers, writers, and owners are differentiated
based on access control lists at the storage server

host systems through a host bus adapter (HBA). LUNUSt assumptions

security proposes to control the access of pasticul

LUNSs from different HBAs. This is facilitated by ique

IDs on the HBAs and world wide unique numbers which

« apart from the users and the network, all other
players are assumed to be trusted. AFS is
vulnerable to leak, modify, and destroy attacks in

identify them. The host operating system and device collusion with any of the servers.

driver are trusted not to forge or spoof IDs.

LUN security can be implemented either at the host

[HPO1a], in the network switch [BrocadeO1], or et
storage controller [HPO1]. The following is trueden-
eral of these solutions:
players
« there is no notion of individual users. One can
designate read-only permission to some hosts.
« there is no group or namespace server.

trust assumptions
 all players are trusted to identify themselves
correctly. The network and servers are also trusted
security primitives
« typically, players are identified by their worldde
number, and this is used for authentication.
* authorization can be performed by maintaining an
access control list as follows:
— at the hosts, by setting up the set of storage
controllers that the host may contact;
— on the wire, by controlling the port mapping
at the network switches

— at the storage server, by setting up the list of

HBAs allowed to access each LUN.
* no encryption is performed on the wire or on disk.

«if a user's group information is changed (or
revoked) the user continues to have access to files
in that group until the user’s token expires.

security primitives

« Kerberos authentication is used.

- the servers maintain per-directory access control
lists to authorize accesses. The underlying UNIX
file permissions are also applied locally.

« AFS does not encrypt on the disk, but RPC
messages are secured.

« revocation is done by either changing the access
control list or making appropriate changes in the
Kerberos server.

security primitives
e though the authentication is centralized,
authorization is distributed to the storage servers

e as in UNIX, users groups are used to simplify
authorization rules.

convenience

« single password login via Kerberos, tokens cached
for 24 hours by default, often set shorter
(e.g., 1 hour) for administrative accounts, or longer
(e.g., 30 days) for long-running applications.

3.9 NFS

» revocation is achieved by changing the access There have been a number of proposals to buildarse

control list.

3.8 AFS

AFS [Howard88] is one of the first distributed fibys-
tems that specifically addressed security issudsS A

assumes untrusted users, and uses Kerberos tomtwuthe

cate users to servers. At the beginning of a sesaiers

networked file system by providing a security layper
top of NFS. These include proposals to secure € R
[Taylor86] and tunnelling NFS through SSH or SSL
[Gerraty99] to protect data on the wire. The seguri
assumptions and implications of these systems lglose
match those of AFS and NASD.

The recent NFSv4 specification [SheplerO0] exgiicit

addresses the problem of securing the RPC mechanism

d Currently it proposes at least three security meismas:
aone using Kerberos and two using a public key infra

obtaintokensfrom a Kerberos server, which authorizes
them to access the storage servers. AFS serveéfyg ther
tokens and then do appropriate authorization base
group information maintained by a group server.
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structure. All these essentially set up a secunenconi-

cation channel and enable mutual authentication. « user groups are used by the native Windows file

Interestingly, one of these mechanisms, low inftest
ture public key mechanism - exploits the fact thatcli-
ent authentication can proceed after establishswrare
channel, to reduce the PKI overhead. In this schamhe

optimizations

access control lists.
« files are encrypted using a long-term key.

3.11 Survivable storage

the server needs to have a public/private pair kwhic Addressing destroy attacks in collusion with sterag
authenticates the server and sets up a secure elhanrservers requires survivable storage, i.e., somehaec
NFSv4 also greatly expands the use of ACLs for s&ce nism to recover from the total loss of a storageereby
control, very similar to AFS ACLs. keeping multiple copies of the data. Several ptsjear-
310 Windows EFS rently underway attempt to address security ang-lon

) ) ] o term protection on a much wider scale (in spaceiand
The Encrypting File System (EFS) for Windows it (ime) than any existing system. PASIS considenag®

grated into NTFS and supports securing data sinolar \\here data integrity is maintained in the face fuf t
CFS [Microsoft99]. To facilitate file sharing, ERSeS  gegtryction or compromise of some number of replica
lockboxes to hold the_ key of th_e encrypted file.isTh [Wylie00] and OceanStore considers a world-wideoset
lockbox contains the file encryption key protectgda  gnorynted replicas [Kubiatowicz00]. Another mecha-
public/private key. EFS supports key escrow byudel iy for protecting data from unauthorized modifica
ing a key recovery agent among the users allowed tong js to use versioning on the storage senverthat
access any file. EFS encrypts and decrypts dai@iii0s 55 can be reverted to a state before an intruapro-

to th_e disk, so some external networ_k securitytgmius posed by S4 [Strunk00]. The most powerful system to
required to secure the da_\ta on the wire to a reserteer. protect against all types of destroy attacks migtit use
The characteristics of Windows EFS are as follows: 7 .ombination of these two schemes. as CarnegieMel
has proposed by using S4 as a file system on top of
PASIS storage.

players

» owners, readers, and writers are differentiated.

e the operating system functions as the group, .
storage, and namespace server. 4 Evaluation
This section explores the costs of implementingvidre
ious design choices discussed above, and the ingpact
these choices on security. The purpose of pregetttia
data is to compare the relative costs of the systdist
cussed in Section 3 using a trace from a real systéim
* data is sent in the clear on the wire. allows us to evaluate expensive operations sudchllas
« a user’s private key is used to get the file eption bandwidth encryption, key distribution, and key gen

key. Some external mechanism must exist to tion in practice.

distribute users’ public keys. The basis for our evaluation is a 10-day tracelldila
« revocation requires re-encrypting files with a new system accesses done by a medium-sized workgroup

encryption key and re-encrypting the lockbox. using a 4-way HP-UX time-sharing server attached to
« revocation is achieved by changing the access Several disk arrays and a total of 500 GB of sterag

control list 12-hour 10-day

security primitives

» Windows primitives are used for authenticating and
authorizing writes.

» data is stored encrypted on the disk.

trust assumptions hours 12 240
» EFS is vulnerable to attacks on the wire if used |requests 11.5 million 97.4 million
without an external secure network solution. data moved 23 GB 129 GB
* EFS secures against leak and modify attacks [active users 23 32
mounted in collusion with the server. user accounts 207 207
- if the private key of the key recovery agent is active files 111,000 969,000
compromised, all files in the system are protected [iotal files 4.0 million 4.0 million
only by the server's authentication and file systems 24 24

authorization primitives.
Table3. Overview of file system trace used for evaluatiol
The 10-day trace covers a period in late 2000 feom
Thursday to the following Saturday. The 12-hoursaib
covers 8am to 8pm on the first trace day.
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space. The trace was collected by instrumentindgid¢ine  each time. In CFS, on the other hand, data is etexy
nel to log all file system calls at the syscalleifiice. by the clients before ever being sent to the seiMeis
Since this is above the file buffer cache, the narmb provides the same level of privacy when data ighen
shown will be pessimistic to any system that attisnbgp ~ wire, but requires only checksums and signaturekeat
optimize server messages or key usage based cateelpe server, as shown for Cepheus.

access. Table 3 provides an overview of the trace.
Implementing each of these systems in the sameagmvi
ment, with the same users, in order to perform @& co
trolled experiment would be prohibitively expensivée

4.2 Granularity of protection

The primary comparison among the encrypt-on-disk sy
tems is the level of protection and complexity efyk

use an analysis of the trace to estimate how thtesy management, and how keys are aggregated to objects.

would behave and compare the relative operatiotscos 120!€ 5 gives counts for the total number of keyeus
This requires us to make some inferences about thgach of the three high-level classes of designsirgu
design of the various systems that are not alwpgsis ~ PET-session keys, per-file keys,or per-group kejse

fied — we highlight these assumptions when they mighf@Ple shows the number of keys on a per-user tasis
affect the comparison. several representative users and system useridisgdur

the 12-hour trace period. The representative useesa
4.1 Security primitives listed include the busiest users in terms of key arsd
Table 4 shows the total number of cryptographic aper key distribution, as well as several system usettidsé
tions required for particular security primitivetepend- own substantial numbers of files. The first threlumns
ing on the granularity at which they are implemente consider per-session keys as used in the encryptien
This clearly illustrates the difference betweendhethe-  systems. The middle four columns consider perkiggs
wire and on-the-disk encryption systems. In NASi® t as a logical extreme. The last four columns comside
server bears the cost of both the checksums and thper-group key scheme such as that used in Cephkes.
encryption (assuming the privacy security levelhisT table shows the number of keys each user would treed
cost is reduced somewhat by the pre-computed checlobtain during the trace period if keys were creaiBly
sums, but the encryption cost remains high. Sineesa  for eachpermission groupf files (i.e., where all files
sion key is computed for each client/server intéos¢  that have the same owner, group, and UNIX pernmissio
the same file sent to multiple clients must be woterd ~ bits share a single key). We see that the numbkeys

messages | bytes | messages | bandwidth
operation (1,000s) (MB) (req/s) (MB/s)

message signatures 97,400 n/a 6,600 n/a
f‘netregty checksums 37,300 129,000 6,600 125 - - X -
pre-computed cksums 14,600 n/a 1 n/a X - - X
server - encryption (reads) 22,700 77,700 780 6.4 X - - -
privacy decryption (write) 14,600 51,400 740 6.1 X - - -
client - privacy | encrypt/decrypt 37,300, 129,000 1,520 125 X X X X
per request 97,400 - 6,600 - - - - -
Zirc\fgn'g'éiy per open/close 7,700 - 433 - X - X X
per logical volume 24 - 4/ min - - X - -
group server - | P& file 11,100 - 1,100 - X X - -
key per group 177 - 18 - - - - X
distribution 56 Togical volume 24 - 1 - = - X -

Table 4. Number of cryptographic operations at the serverefach designThe total number of cryptographic operations panked
by the server over the course of the 10-day traiee during the busiest 1 minute interval in thedrdiessage signatures are calculate
for every request, checksums only for READ and WIRI€quests. Checksums and encryptions/decryptians h per-byte cost,
whereas key exchanges and distributions do not.lleing pre-computed checksums, only WRITE opematimcur server
checksumming. The peak load in terms of messagesiigterval filled almost entirely with STAT recgts; the peak load in terms of
bytes has a much smaller number of READ/WRITE retjud he main cost difference can be seen in fkiagyrows. In the encrypt-
on-wire systems, both server and client work isunexgl, whereas the encrypt-on-disk systems do emtire the server work. The
granularity chosen for keys has a large effecthennumber of messages required for key setup aricefodistribution by the group
server, as shown in the last six rows. The valuéisa peak load column give the total streamingmaremessage performance requirec
from the server and client processors, or by amghkare engine that might offload the cryptograpFiye final four columns specify
which systems bear which costs; an “X” means thatslystem uses the indicated cryptographic operatio
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per per per non- | newly non- | newly
user request | open/close | filesys/lv | total owner | owner |created| total | owner | owner |created

alice 85,100 6,130 6 203 197 85 29 1 0
bob 8,200 755 4 22 3 19 7 18 2 16 0
charlie 158,000 10,400 5 429 32 397 120 49 6 43 0
dick 46,500 2,360 3 475 62 413 3 24 8 16 0
erik 1,450,000 44,200 7| 1,060 571 486 46 43 10 33 0
root 16,000,000 681,000 17/109,000| 16,700 92,600| 10,400 756 75 681 0
news 1,670,000 264,000 3| 103,000 103,000 42| 79,200 13 6 7 0
others 945,000 57,100 15| 2,300| 1,620 684 219 221 84 137 0

Table 5. Key use by readers and writefthe number of keys needed if encryption is dona @er-session basis using three differer
definitions for session: a session per requestsaisn per open/close pair, and a single sessiofilgpeystem or logical volume (as in
NASD, SFS, and iSCSI); on a per-file basis (as W8}, and on a per-group basis (as in Cepheus)tdtaenumber of per-file or per-

group keys by username is separated into theketa used, the number of those keys owned by e tiie number that would have
to be obtained from another owner, and the numberew keys created. The row for “others” contaihe totals for the thirteen

additional usernames active during the 12-housetrdtie rows for usernames “wilkes”, “frank” and fibthat appear in the following

table are ommitted here since those users weraatioe during the 12-hour trace and the columnd Beacross the entire row.

[ | perle | Sk |
files keys groups keys wl W | ,2:];"”*”“'5‘ i
user owned |distributed | owned | distributed a0 ' ‘ i
wilkes 54,500 7,810 28 18 300 - 1
alice 19,400 31 13 5 =0 1
bob 216,000 6,210 17 a7 ]
charlie 4,020 148 12 8 ool |
dick 13,700 114 13 9 sol- ]
erik 133,000 1,650 14 8 e e
frank 64,900 23,000 32 17 i cevahe d ¢ Tabl
: Figure 1. Per-file vs. per-group key3he data of Table 5 ant
bin 191,000 14,800 33 21 Table 6 presented graphically for several usersndJger-
root 240,000 644 129 29 group keys dramatically reduces both the numbé&egs§ used
e 1,570,000 554 15 5 by readers and writers and “the num?c_er of keys rihadt be
distributed by owners. Here “average” is the pexrumean of
others 1,430,000 40,400 2,260 601 the “others” rows from the tables.

Table 6. Kfely dkistribugion by ownkersAssuming a Sy_Ste‘En tha writers of the files for which they are responsit\ée can
uses per-file keys, how many keys must a particalaner - ;
send to other users. The “owned” columns showdteig for — co f.rom these numbers t_hat. a §ystem reqwrmg:tdlre
all the files or groups that exist in the file st and the ~USer involvement for key distribution would be pitmh
“distributed” columns show the number of keys smritduring  tively cumbersome (imagine writing 7,500 keys fram

the 12-hour trace. The row for “others” containe thtals for ; ; ;
the approximately 200 additional usernames onyhten. possible list of 50,000 on scraps of paper in therse of
several hours at your desk).

required for the per-group scheme is orders of itade@  The two columns on the right are much more promgisin
lower than for the per-file scheme and several Grdé¢ They show the number of keys required if we move to
magnitude less than most of the per—session schemes key-per-permission-group scheme. In this casegtiser
Considering the complexity for owners, as opposed t not a separate key for each file, but a key fohedass
readers and writers, Table 6 looks at the numbé&eyp$  of files, as described above. This produces a muuxte
that would have to be managed by data owners pgirg manageable list with roughly 30 keys per ownerhwid
file or per-group keys. The table shows the totahber  or 15 of them distributed during a 12 hour perisaine-
of keys needed by each owner. The “owned” columrthing that could even be done manually (using scodp
gives a count of all the files in the entire filgseem  paper) for maximum security. A graphical represgota
owned by the given user. The “distributed” numbersof the difference is shown in Figure 1 where theeptial
show the number of keys a given owner would hawk habenefit of group keys is clear. An order of magdéuess
to distribute during the time of the trace to raadend  keys are required for the per-group scheme.
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granularity files bytes NASD | CFS SFS | Cepheus
aggressive revocation per-file 3,700 2GB _ X X _
99 per-group 546,000 91 GB - - - -
. per-file 470 I,GB] - - - -
lazy revocation
per-group 121,000 43 GB - - - X
encrypt-on-wire per-session 969,000 129 GB X - - -

Table 7. The cost of revocation for each desitjwte the explosion in the number of files that haesrevoked when
a per-group system is used. Aggressive revocatisanraes that all affected files are re-encryptedeéndtiately. Lazy
revocation assumes that files are re-encrypted thrdynext time they are read or written, so thaieslshow how
much of the data had been re-encrypted after 16.ddys number would increase over time, eventuabfging the
window of vulnerable data and reaching the aggvessilues. Note that even the aggressive, per-gsogme still
performs less total encryption work than the entypwire scheme which is constantly changing sk The final
four columns specify which systems bear which ¢a@sis’X” means that the system uses the indicatechamnism.

Note that the numbers in the table are skewed $ilgte
our analysis assumes users do not already havikegsy
cached when the trace starts. In practice, orlonger

encrypted as it is read from or written to the systData
is re-encrypted and re-written whenever the file is
accessed for read or write. These values are shothe

trace, the number of keys to be distributed each dalazy revocation portion of the table.

would be even lower (e.g., when we consider theesnt
10-day trace, the total number of per-group kegsrith-
uted is, on average, roughly double the numbers/isho

For the lazy revocation scenario in Table 7, theundd
of data to be re-encrypted is nearly the sameeawithik
done by an encrypt-on-wire scheme (the server

for 12 hours). Another option would be per-directory encrypt/decrypt lines from Table 4). This gives hent
keys as used in CFS. These numbers are not shawn, kevidence for the duality between encrypt-on-theewir

fall roughly between per-file and per-group keys.

4.3 Cost of revocation

The downside of using long-term keys for encrypti®n
the additional cost on revocation. When a userdsav
group or organization and their access is to beove,

the stored data that is encrypted with any keys ttha
revoked user had access to must be re-encrypteio
vent future unauthorized access. Table 7 gives|daiai
the cost of revocation when a user leaves a grisup.
system that uses the same key for a group of idssd
on ownership or permissions, there is an additioead-

cation that results when a user changes permissioas
file (e.g., usingchmodin UNIX), revocation for this rea-
son is rare in our trace and not covered in theetab

We simulate revocation in our 10-day trace as fedlo
We choose a single user that will be revoked dutfirg

and encrypt-on-disk schemes. In the encrypt-onatine-
systems, data is encrypted and decrypted eachitime
crosses the network. In the encrypt-on-disk systelats

is already encrypted and requires no further workhe
server. However, on revocation, the encrypt-on-gigk
tem requires extensive re-encryption. With lazyoear
tion, this re-encryption occurs whenever the figead

or written, which makes the work done almost corapar
ble to the encrypt-on-the-wire system. The onlyaam
ing difference is because encrypt-on-disk needs to
perform the encryption only once (until the nextaea-
tion), whereas encrypt-on-wire repeats the encoypti
and decryption each time a file is transferred. Thst
differential between the two systems will come ddwn
the relative frequency of revocations, and the Itota
amount of data a particular revocation affects.

periodt and track all the keys obtained by this user ovels Conclusions

the 10-day trace. For aggressive, per-file re-guiion,
the number of files re-encrypted is simply all fites the
revoked user accessed in the past 10 days. Intansys
with per-file keys, this is the total amount of aldhat
must be re-encrypted. For a system with per-graysk
the cost includes the re-encryption of all thesfile all
the file groups to which the user had access. &oy |

This paper has developed a common framework of the
core functions required for any secure storageesyst
We have reviewed all the previously proposed system
for storage security, and mapped them into thisoset
components and design choices. For integrity offaet
communication, any secure storage system mustgegovi

revocation systems, we assume that file data is re30me variant of signed message checksums thagstron

1 We believe that a frequency of one revocation inldys
is reasonable. The turnover rate at Silicon Valley

tie particular data to particular players. For pdy and
confidentiality, we have shown that the two maiwsskes

companies in the late 1990s averaged around 18% perOf systems previously described are actually véry-s

year, which means that in a group of 200 peopberaon
would leave about every 10 days.
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lar: encrypt-on-wire (which solely protects the oo
nication between servers and users) and encryjpliskn-
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(which perform encryption and decryption only aeus implementation of a transparent cryptographic &jstem
endpoints, with untrusted servers in between). fatter for UNIX. Technical Report, University of Saletrid97.

: ~ : [Cattaneo01] G. Cattaneo, L. Catuogno, A. Del Soand
systems provide a form gire-computed encryptiofor P. Persiano. The Design and Implementation of a

optimizing the encryption work done by the formgss Transparent Cryptographic File System for UNIX.
tems. We have also shown that encrypt-on-disk syste ~ FREENIX 2001June 2001. o .
with lazy re-encryption begin to have comparable[CravottaOl] N. Cravotta. Accelerating high-speadrgption:

. . . one bottleneck after anoth&DN, August 2001.
encryption and decryption costs to encrypt-on-twew [Dalton01] C. Dalton and T.H. Choo. Trusted Linu&n

systems, even though these would seem to be catyplet Operating System ApproacBACM44 (2), Feburary 2001.

different approaches at first glance. [Fu99] K. Fu. Group sharing and random access in
i ; ; cryptographic storage file systentgllT Master's Thesis
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